高瞻計畫_振動學課程 Lecture 5: Multiple Degrees of Freedom (I)

Prof. Kuo-Shen Chen
Department of Mechanical Engineering
National Cheng-Kung University

1

Outline

- Introduction to MDOF systems
- Typical MDOF vibration of engineering systems
- Normal mode vibration analysis
- Essential linear algebra
- Natural frequencies and natural modes
- System couplings
- Forced vibration analysis
- Simple problem
- Demonstrations

!

Part I. Introduction to MDOF systems

3

Introduction

- Multiple degree of freedom vibration
 - Closer to the real scenario
 - Human body, car suspension, turbine, building etc.
 - Mass → mass matrix; spring constant → stiffness matrix
 - Procedure
 - Convert engineering system to MDOF m-b-k model
 - Obtain the equations
 - Solve the equation using linear algebra
 - Solve the equation using ODE
 - Interpret the result and perform design recommendation

Part II. MDOF vibration of Engineering Systems

Typical MDOF Vibration Model

17

Part III. Normal Mode Analysis

Example Problem

19

Equations of Motion

$$x_{1} = A_{1}e^{i\omega t}$$

$$x_{2} = A_{2}e^{i\omega t}$$

$$(2k - \omega^{2}m)A_{1} - kA_{2} = 0$$

$$-kA_{1} + (2k - 2\omega^{2}m)A_{2} = 0$$

$$\begin{vmatrix} (2k - \omega^{2}m) & -k \\ -k & (2k - 2\omega^{2}m) \end{vmatrix} = 0$$

Letting $\omega^2 = \lambda$.

$$\lambda^2 - \left(3\frac{k}{m}\right)\lambda + \frac{3}{2}\left(\frac{k}{m}\right)^2 = 0$$

Solution

$$\lambda_1 = \left(\frac{3}{2} - \frac{1}{2}\sqrt{3}\right) \frac{k}{m} = 0.634 \frac{k}{m}$$

$$\lambda_2 = \left(\frac{3}{2} + \frac{1}{2}\sqrt{3}\right) \frac{k}{m} = 2.366 \frac{k}{m}$$

$$\omega_1 = \lambda_1^{1/2} = \sqrt{0.634 \frac{k}{m}}$$

$$\omega_2 = \lambda_2^{1/2} = \sqrt{2.366 \frac{k}{m}}$$

21

Solution

$$\left(\frac{A_1}{A_2}\right)^{(1)} = \frac{k}{2k - \omega_1^2 m} = \frac{1}{2 - 0.634} = 0.731$$

$$\left(\frac{A_1}{A_2}\right)^{(2)} = \frac{k}{2k - \omega_2^2 m} = \frac{1}{2 - 2.366} = -2.73$$

$$\phi_1(x) = \left\{ \begin{array}{l} 0.731 \\ 1.00 \end{array} \right\} \qquad \phi_2(x) = \left\{ \begin{array}{l} -2.73 \\ 1.00 \end{array} \right\}$$

Example: Coupled Pendulum

$$ml^2\ddot{\theta}_1 = -mgl\theta_1 - ka^2(\theta_1 - \theta_2)$$

$$ml^2\ddot{\theta}_2 = -mgl\theta_2 + ka^2(\theta_1 - \theta_2)$$

25

Continue

$$\theta_1 = A_1 \cos \omega t$$

$$\theta_2 = A_2 \cos \omega t$$

$$\omega_1 = \sqrt{\frac{g}{l}} \qquad \qquad \omega_2 = \sqrt{\frac{g}{l} + 2\frac{k}{m}\frac{a^2}{l^2}}$$

$$\left(\frac{A_1}{A_2}\right)^{(1)} = 1.0 \qquad \left(\frac{A_1}{A_2}\right)^{(2)} = -1.0$$

if the initial conditions are $\theta_1(0) = A$ and $\theta_2(0) = 0$,

$$\theta_1(t) = \frac{1}{2}A\cos\omega_1 t + \frac{1}{2}A\cos\omega_2 t$$

$$\theta_2(t) = \frac{1}{2}A\cos\omega_1 t - \frac{1}{2}A\cos\omega_2 t$$

Continue (Beating)

$$\theta_1(t) = A \cos\left(\frac{\omega_1 - \omega_2}{2}\right)t \cos\left(\frac{\omega_1 + \omega_2}{2}\right)t$$

$$\theta_2(t) = -A \sin\left(\frac{\omega_1 - \omega_2}{2}\right) t \sin\left(\frac{\omega_1 + \omega_2}{2}\right) t$$

Figure 5.1-6. Exchange of energy between pendulums.

27

Beating: Visualization

Part IV. Essential Linear Algebra

29

Eigenvalues / Eigenvectors

- Matrix Algebra: Eigenvalue problem
 - $\hfill \square$ Solve AX= $\!\lambda X$ to find specific λ

 - $\hfill\Box$ For each $\lambda,$ the corresponding X is the eigenvector
- For vibration problem

$$[K - \omega^2 M]X = 0$$

ω: natural frequency

Matrix Diagnalization / System Decouple

- Modal matrix P
 - A matrix form by all eigenvector (aka modal matrix)

$$[M]\underline{\ddot{x}} + [K]\underline{x} = 0$$

$$[M_D] = P^{-1}MP$$

$$[K_D] = P^{-1}KP$$

$$[M_D]\underline{\ddot{x}} + [K_D]\underline{x} = 0$$

 $\hfill \square$ Where M_D and K_D are diagonized mass and stiffness matrix

31

Part V. Natural Frequencies/Modes

Part VI. System Coupling

35

Introduction

- Coupling depends on the seelction of coordinates
- For undamped system, it is always possible to find a particular coordinate set to decouple the system
 - Principal direction, or normal coordinate
- For damped system, in general, it cannot decouple the system
 - □ Except "proportional" damping

A 2-DOF Example

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$

System with damping

$$\begin{bmatrix} m_{11} & 0 \\ 0 & m_{22} \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{Bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{Bmatrix} + \begin{bmatrix} k_{11} & 0 \\ 0 & k_{22} \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} 0 \end{Bmatrix}$$

If $C_{12}=C_{21}=0$ (Proportional damping), then the system is uncoupled

37

Car Suspension Example

Static Coupling

Mass matrix decoupled, stiffness matrix coupled

Figure 5.2-1.

Figure 5.2-2. Coordinates leading to static coupling.

$$\begin{bmatrix} m & 0 \\ 0 & J \end{bmatrix} \begin{Bmatrix} \ddot{x} \\ \ddot{\theta} \end{Bmatrix} + \begin{bmatrix} (k_1 + k_2) & (k_2 l_2 - k_1 l_1) \\ (k_2 l_2 - k_1 l_1) & (k_1 l_1^2 + k_2 l_2^2) \end{bmatrix} \begin{Bmatrix} x \\ \theta \end{Bmatrix} = \begin{Bmatrix} 0 \end{Bmatrix}$$

If $k_1 l_1 = k_2 l_2$, the coupling disappears, and we obtain uncoupled x and θ vibrations.

Dynamic Coupling

Mass matrix coupled, stiffness matrix decoupled

Figure 5.2-3. Coordinates leading to dynamic coupling.

$$\begin{bmatrix} m & me \\ me & J_c \end{bmatrix} \begin{pmatrix} \ddot{x}_c \\ \ddot{\theta} \end{pmatrix} + \begin{bmatrix} (k_1 + k_2) & 0 \\ 0 & (k_1 l_3^2 + k_2 l_4^2) \end{bmatrix} \begin{pmatrix} x_c \\ \theta \end{pmatrix} = \begin{cases} 0 \end{cases}$$

Static and Dynamic Coupling

Mass matrix coupled, stiffness matrix coupled

Figure 5.2-4. Coordinates leading to static and dynamic coupling.

$$\begin{bmatrix} m & ml_1 \\ ml_1 & J_1 \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{\theta} \end{Bmatrix} + \begin{bmatrix} (k_1 + k_2) & k_2l \\ k_2l & k_2l^2 \end{bmatrix} \begin{Bmatrix} x_1 \\ \theta \end{Bmatrix} = \begin{Bmatrix} 0 \end{Bmatrix}$$

41

Part VII. Forced Vibration Analysis

Introductory Example

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} F_1 \\ 0 \end{Bmatrix} \sin \omega t$$

Let
$$\begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} X_1 \\ X_2 \end{Bmatrix} \sin \omega t$$

Let
$$\begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} X_1 \\ X_2 \end{Bmatrix} \sin \omega t$$

$$\begin{bmatrix} (k_{11} - m_1 \omega^2) & k_{12} \\ k_{21} & (k_{22} - m_2 \omega^2) \end{bmatrix} \begin{Bmatrix} X_1 \\ X_2 \end{Bmatrix} = \begin{Bmatrix} F_1 \\ 0 \end{Bmatrix}$$
Or $\begin{bmatrix} Z(\omega) \end{bmatrix} \begin{Bmatrix} X_1 \\ X_2 \end{Bmatrix} = \begin{Bmatrix} F_1 \\ 0 \end{Bmatrix}$

Or
$$[Z(\omega)] \begin{Bmatrix} X_1 \\ X_2 \end{Bmatrix} = \begin{Bmatrix} F_1 \\ 0 \end{Bmatrix}$$

Cont'd

Or
$$\begin{cases} X_1 \\ X_2 \end{cases} = \frac{1}{|Z(\omega)|} \begin{bmatrix} (k_{22} - m_2 \omega^2) & -k_{12} \\ -k_{21} & (k_{11} - m_1 \omega^2) \end{bmatrix} \begin{Bmatrix} F \\ 0 \end{Bmatrix}$$

$$X_{1} = \frac{(k_{22} - m_{2}\omega^{2})F}{m_{1}m_{2}(\omega_{1}^{2} - \omega^{2})(\omega_{2}^{2} - \omega^{2})}$$
Or
$$X_{2} = \frac{-k_{12}F}{m_{1}m_{2}(\omega_{1}^{2} - \omega^{2})(\omega_{2}^{2} - \omega^{2})}$$

Semi-Definite Systems

- Vibration system containing rigid-body mode
 - □ Rigid body mode, vibration frequency =0

Examples

51

Part VIII. Simple Problems

Problem 1. Frequencies of Mass-Spring System (Rao. 5.1)

Find the natural frequencies and mode shapes of a spring-mass system, shown in Fig. 5.4, which is constrained to move in the vertical direction only. Take n = 1.

53

Problem 2. Free Vibration of a 2-DOF system (Rao. 5.3)

Find the free vibration response of the system shown in Fig. 5.3(a) with $k_1 = 30$, $k_2 = 5$, $k_3 = 0$, $m_1 = 10$, $m_2 = 1$ and $c_1 = c_2 = c_3 = 0$ for the initial conditions $x_1(0) = 1$, $\dot{x}_1(0) = x_2(0) = \dot{x}_2(0) = 0$.

Problem 3. Torsional Vibration (Rao. 5.4)

FIGURE 5.7 Torsional system.

Find the natural frequencies and mode shapes for the torsional system shown in Fig. 5.7 for $J_1 = J_0$, $J_2 = 2J_0$, and $k_{t1} = k_{t2} = k_t$.

55

Problem 4. Steady State Response of a 2-DOF System (Rao. 5.8)

Find the steady-state response of the system shown in Fig. 5.13 when the mass m_1 is excited by the force $F_1(t) = F_{10} \cos \omega t$. Also, plot its frequency response curve.

