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Outline

 Introduction to MDOF systems

 Typical MDOF vibration of engineering 
systems

 Normal mode vibration analysis

 Essential linear algebra

 Natural frequencies and natural modes

 System couplings

 Forced vibration analysis

 Simple problem

 Demonstrations
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Part I. Introduction to MDOF systems
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Introduction

 Multiple degree of freedom vibration
 Closer to the real scenario 

 Human body, car suspension, turbine, building etc.

 Mass  mass matrix; spring constant  stiffness 
matrix

 Procedure
 Convert engineering system to MDOF m-b-k model

 Obtain the equations

 Solve the equation using linear algebra

 Solve the equation using ODE

 Interpret the result and perform design recommendation
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Introductory Example: Car Safety Design
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Human Vibration Model
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Vibration Frequency 
Sensitivity of 
Different Part
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Evaluate System Characteristics
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Influence of Car Seats on Vibration
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Motorcycle
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Part II. MDOF vibration of 
Engineering Systems
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Motor-Pump on Elastic Foundation
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Packaging of an Instrument
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Three-story Building
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A CNC Machine
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Horizontal Milling Machine
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Typical MDOF Vibration Model
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Part III. Normal Mode Analysis

18



2023/5/2

10

Example Problem
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Equations of Motion
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Solution
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Solution
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Mode Shapes
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Multiple DOF Systems 

1DOF

2 DOF

3 DOF

4 DOF
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Example: Coupled Pendulum
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Continue
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Continue (Beating)
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Beating: Visualization
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Part IV. Essential Linear Algebra 
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Eigenvalues / Eigenvectors

 Matrix Algebra: Eigenvalue problem
 Solve AX=X to find specific 
 s satisfy the problem is the eigenvalues

 For each , the corresponding X is the eigenvector

 For vibration problem

 : natural frequency

2[ ] 0K M X 
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Matrix Diagnalization / System Decouple

 Modal matrix P
 A matrix form by all eigenvector (aka modal matrix)

 Where MD and KD are diagonized mass and 
stiffness matrix
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Part V. Natural Frequencies/Modes
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Natural Frequencies 
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Natural Modes

412.3Hz
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Part VI. System Coupling
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Introduction

 Coupling depends on the seelction of 
coordinates

 For undamped system, it is always possible 
to find a particular coordinate set to decouple 
the system
 Principal direction, or normal coordinate

 For damped system, in general, it cannot 
decouple the system
 Except “proportional” damping
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A 2-DOF Example

If  C12=C21 =0 (Proportional damping), then the system is uncoupled

System with damping
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Car Suspension Example
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Static Coupling

Mass matrix decoupled, stiffness matrix coupled
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Dynamic Coupling

Mass matrix coupled, stiffness matrix decoupled
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Static and Dynamic Coupling

Mass matrix coupled, stiffness matrix coupled
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Part VII. Forced Vibration Analysis
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Introductory Example

Let

Or
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Cont’d

Or

Or
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Example
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Response

1 2

Anti-Resonance 
(Zero)

Resonance (Pole)
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Vibration Absorber

Adding extra mass/spring to reduce 
resonance vibrationm1, k1

m2, k2
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Response
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Dynamic Absorber
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Example: Stockbridge Damper

 a tuned mass damper used 
to suppress wind-induced 
vibrations on taut cables, 
such as overhead power 
lines

 consists of two masses at the 
ends of a short length of 
cable or flexible rod 

 damper is designed to 
dissipate the energy of 
oscillations in the main cable 
to an acceptable level. 

 Aka "dog-bone damper"
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Semi-Definite Systems
 Vibration system containing rigid-body mode
 Rigid body mode, vibration frequency =0

 Examples
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Part VIII. Simple Problems
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Problem 1. Frequencies of Mass-
Spring System (Rao. 5.1)
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Problem 2. Free Vibration of a 2-DOF 
system (Rao. 5.3) 
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Problem 3. Torsional Vibration (Rao. 5.4)
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Problem 4. Steady State Response of a 
2-DOF System (Rao. 5.8) 
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Part IX. Demonstrations
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